# README
Inverse Digit Sum
Define $s(n)$ to be the smallest number that has a digit sum of $n$. For example $s(10)=19$. Let $S(k)=\sum_{n-1}^k s(n)$. You are given $S(20)=1074$.
Further let $f_i$ be the Fibonacci sequence defined by $f_0=0, f_1=1$ and $f_i = f_{i-1}+f_{i-2}$ for all $i\ge 2$.
Find $\sum_{i=2}^{90} S(f_i)$. Give your answer modulo $1\ 000\ 000\ 007$.
# Functions
No description provided by the author