package
0.0.0-20240717210230-cb72c3092e0b
Repository: https://github.com/ashinzekene/algorithms.git
Documentation: pkg.go.dev

# README

MaxCounters

You are given N counters, initially set to 0, and you have two possible operations on them:

  • increase(X) − counter X is increased by 1,

  • max counter − all counters are set to the maximum value of any counter. A non-empty array A of M integers is given. This array represents consecutive operations:

  • if A[K] = X, such that 1 ≤ X ≤ N, then operation K is increase(X),

  • if A[K] = N + 1 then operation K is max counter. For example, given integer N = 5 and array A such that:

    A[0] = 3
    A[1] = 4
    A[2] = 4
    A[3] = 6
    A[4] = 1
    A[5] = 4
    A[6] = 4

the values of the counters after each consecutive operation will be:

    (0, 0, 1, 0, 0)
    (0, 0, 1, 1, 0)
    (0, 0, 1, 2, 0)
    (2, 2, 2, 2, 2)
    (3, 2, 2, 2, 2)
    (3, 2, 2, 3, 2)
    (3, 2, 2, 4, 2)

The goal is to calculate the value of every counter after all operations.

Write a function:

class Solution { public int[] solution(int N, int[] A); }

that, given an integer N and a non-empty array A consisting of M integers, returns a sequence of integers representing the values of the counters.

Result array should be returned as an array of integers.

For example, given:

    A[0] = 3
    A[1] = 4
    A[2] = 4
    A[3] = 6
    A[4] = 1
    A[5] = 4
    A[6] = 4

the function should return [3, 2, 2, 4, 2], as explained above.

Write an efficient algorithm for the following assumptions:

  • N and M are integers within the range [1..100,000];
  • each element of array A is an integer within the range [1..N + 1].