package
0.0.0-20240923064808-a9a762e127f6
Repository: https://github.com/sunilbpandey/project-euler.git
Documentation: pkg.go.dev

# README

Square root convergents

It is possible to show that the square root of two can be expressed as an infinite continued fraction.

$$ \sqrt{2} = 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \dots}}} $$

By expanding this for the first four iterations, we get:

$1 + \frac{1}{2} = \frac{3}{2} = 1.5$

$1 + \frac{1}{2 + \frac{1}{2}} = \frac{7}{5} = 1.4$

$1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2}}} = \frac{17}{12} = 1.41666\dots$

$1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2}}}} = \frac{41}{29} = 1.41379\dots$

The next three expansions are $\frac{99}{70}$, $\frac{239}{169}$, and $\frac{577}{408}$, but the eighth expansion, $\frac{1393}{985}$, is the first example where the number of digits in the numerator exceeds the number of digits in the denominator.

In the first one-thousand expansions, how many fractions contain a numerator with more digits than the denominator?

Source: https://projecteuler.net/problem=57