# README
Maximum path sum I
By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23.
$$ \textbf{3}\ \textbf{7}\ \ 4\ 2\ \ \textbf{4}\ \ 6\ 8\ \ 5\ \ \textbf{9}\ \ 3 $$
That is, 3 + 7 + 4 + 9 = 23.
Find the maximum total from top to bottom of the triangle below:
$$ 75\ 95\ \ 64\ 17\ \ 47\ \ 82\ 18\ \ 35\ \ 87\ \ 10\ 20\ \ 04\ \ 82\ \ 47\ \ 65\ 19\ \ 01\ \ 23\ \ 75\ \ 03\ \ 34\ 88\ \ 02\ \ 77\ \ 73\ \ 07\ \ 63\ \ 67\ 99\ \ 65\ \ 04\ \ 28\ \ 06\ \ 16\ \ 70\ \ 92\ 41\ \ 41\ \ 26\ \ 56\ \ 83\ \ 40\ \ 80\ \ 70\ \ 33\ 41\ \ 48\ \ 72\ \ 33\ \ 47\ \ 32\ \ 37\ \ 16\ \ 94\ \ 29\ 53\ \ 71\ \ 44\ \ 65\ \ 25\ \ 43\ \ 91\ \ 52\ \ 97\ \ 51\ \ 14\ 70\ \ 11\ \ 33\ \ 28\ \ 77\ \ 73\ \ 17\ \ 78\ \ 39\ \ 68\ \ 17\ \ 57\ 91\ \ 71\ \ 52\ \ 38\ \ 17\ \ 14\ \ 91\ \ 43\ \ 58\ \ 50\ \ 27\ \ 29\ \ 48\ 63\ \ 66\ \ 04\ \ 68\ \ 89\ \ 53\ \ 67\ \ 30\ \ 73\ \ 16\ \ 69\ \ 87\ \ 40\ \ 31\ 04\ \ 62\ \ 98\ \ 27\ \ 23\ \ 09\ \ 70\ \ 98\ \ 73\ \ 93\ \ 38\ \ 53\ \ 60\ \ 04\ \ 23 $$
NOTE: As there are only 16384 routes, it is possible to solve this problem by trying every route. However, Problem 67, is the same challenge with a triangle containing one-hundred rows; it cannot be solved by brute force, and requires a clever method! ;o)