Categorygithub.com/scottwinkler/terraform
modulepackage
0.11.5
Repository: https://github.com/scottwinkler/terraform.git
Documentation: pkg.go.dev

# README

Terraform

Terraform

Terraform is a tool for building, changing, and versioning infrastructure safely and efficiently. Terraform can manage existing and popular service providers as well as custom in-house solutions.

The key features of Terraform are:

  • Infrastructure as Code: Infrastructure is described using a high-level configuration syntax. This allows a blueprint of your datacenter to be versioned and treated as you would any other code. Additionally, infrastructure can be shared and re-used.

  • Execution Plans: Terraform has a "planning" step where it generates an execution plan. The execution plan shows what Terraform will do when you call apply. This lets you avoid any surprises when Terraform manipulates infrastructure.

  • Resource Graph: Terraform builds a graph of all your resources, and parallelizes the creation and modification of any non-dependent resources. Because of this, Terraform builds infrastructure as efficiently as possible, and operators get insight into dependencies in their infrastructure.

  • Change Automation: Complex changesets can be applied to your infrastructure with minimal human interaction. With the previously mentioned execution plan and resource graph, you know exactly what Terraform will change and in what order, avoiding many possible human errors.

For more information, see the introduction section of the Terraform website.

Getting Started & Documentation

If you're new to Terraform and want to get started creating infrastructure, please checkout our Getting Started guide, available on the Terraform website.

All documentation is available on the Terraform website:

Developing Terraform

If you wish to work on Terraform itself or any of its built-in providers, you'll first need Go installed on your machine (version 1.9+ is required). Alternatively, you can use the Vagrantfile in the root of this repo to stand up a virtual machine with the appropriate dev tooling already set up for you.

This repository contains only Terraform core, which includes the command line interface and the main graph engine. Providers are implemented as plugins that each have their own repository in the terraform-providers organization on GitHub. Instructions for developing each provider are in the associated README file. For more information, see the provider development overview.

For local development of Terraform core, first make sure Go is properly installed and that a GOPATH has been set. You will also need to add $GOPATH/bin to your $PATH.

Next, using Git, clone this repository into $GOPATH/src/github.com/hashicorp/terraform. All the necessary dependencies are either vendored or automatically installed, so you just need to type make. This will compile the code and then run the tests. If this exits with exit status 0, then everything is working!

$ cd "$GOPATH/src/github.com/hashicorp/terraform"
$ make

To compile a development version of Terraform and the built-in plugins, run make dev. This will build everything using gox and put Terraform binaries in the bin and $GOPATH/bin folders:

$ make dev
...
$ bin/terraform
...

If you're developing a specific package, you can run tests for just that package by specifying the TEST variable. For example below, onlyterraform package tests will be run.

$ make test TEST=./terraform
...

If you're working on a specific provider which has not been separated into an individual repository and only wish to rebuild that provider, you can use the plugin-dev target. For example, to build only the Test provider:

$ make plugin-dev PLUGIN=provider-test

Dependencies

Terraform stores its dependencies under vendor/, which Go 1.6+ will automatically recognize and load. We use govendor to manage the vendored dependencies.

If you're developing Terraform, there are a few tasks you might need to perform.

Adding a dependency

If you're adding a dependency, you'll need to vendor it in the same Pull Request as the code that depends on it. You should do this in a separate commit from your code, as makes PR review easier and Git history simpler to read in the future.

To add a dependency:

Assuming your work is on a branch called my-feature-branch, the steps look like this:

  1. Add the new package to your GOPATH:

    go get github.com/hashicorp/my-project
    
  2. Add the new package to your vendor/ directory:

    govendor add github.com/hashicorp/my-project/package
    
  3. Review the changes in git and commit them.

Updating a dependency

To update a dependency:

  1. Fetch the dependency:

    govendor fetch github.com/hashicorp/my-project
    
  2. Review the changes in git and commit them.

Acceptance Tests

Terraform has a comprehensive acceptance test suite covering the built-in providers. Our Contributing Guide includes details about how and when to write and run acceptance tests in order to help contributions get accepted quickly.

Cross Compilation and Building for Distribution

If you wish to cross-compile Terraform for another architecture, you can set the XC_OS and XC_ARCH environment variables to values representing the target operating system and architecture before calling make. The output is placed in the pkg subdirectory tree both expanded in a directory representing the OS/architecture combination and as a ZIP archive.

For example, to compile 64-bit Linux binaries on Mac OS X, you can run:

$ XC_OS=linux XC_ARCH=amd64 make bin
...
$ file pkg/linux_amd64/terraform
terraform: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), statically linked, not stripped

XC_OS and XC_ARCH can be space separated lists representing different combinations of operating system and architecture. For example, to compile for both Linux and Mac OS X, targeting both 32- and 64-bit architectures, you can run:

$ XC_OS="linux darwin" XC_ARCH="386 amd64" make bin
...
$ tree ./pkg/ -P "terraform|*.zip"
./pkg/
├── darwin_386
│   └── terraform
├── darwin_386.zip
├── darwin_amd64
│   └── terraform
├── darwin_amd64.zip
├── linux_386
│   └── terraform
├── linux_386.zip
├── linux_amd64
│   └── terraform
└── linux_amd64.zip

4 directories, 8 files

Note: Cross-compilation uses gox, which requires toolchains to be built with versions of Go prior to 1.5. In order to successfully cross-compile with older versions of Go, you will need to run gox -build-toolchain before running the commands detailed above.

Docker

When using docker you don't need to have any of the Go development tools installed and you can clone terraform to any location on disk (doesn't have to be in your $GOPATH). This is useful for users who want to build master or a specific branch for testing without setting up a proper Go environment.

For example, run the following command to build terraform in a linux-based container for macOS.

docker run --rm -v $(pwd):/go/src/github.com/hashicorp/terraform -w /go/src/github.com/hashicorp/terraform -e XC_OS=darwin -e XC_ARCH=amd64 golang:latest bash -c "apt-get update && apt-get install -y zip && make bin"

License

FOSSA Status

# Packages

Package backend provides interfaces that the CLI uses to interact with Terraform.
No description provided by the author
This file is automatically generated by scripts/generate-plugins.go -- Do not edit! .
No description provided by the author
The config package is responsible for loading and validating the configuration.
Package configs contains types that represent Terraform configurations and the different elements thereof.
No description provided by the author
No description provided by the author
No description provided by the author
No description provided by the author
No description provided by the author
No description provided by the author
Package moduledeps contains types that can be used to describe the providers required for all of the modules in a module tree.
No description provided by the author
No description provided by the author
Package repl provides the structs and functions necessary to run REPL for Terraform.
Generate Plugins is a small program that updates the lists of plugins in command/internal_plugin_list.go so they will be compiled into the main terraform binary.
No description provided by the author
Package svchost deals with the representations of the so-called "friendly hostnames" that we use to represent systems that provide Terraform-native remote services, such as module registry, remote operations, etc.
No description provided by the author
Package tfdiags is a utility package for representing errors and warnings in a manner that allows us to produce good messages for the user.
No description provided by the author
The version package provides a location to set the release versions for all packages to consume, without creating import cycles.

# Functions

ConfigDir returns the configuration directory for Terraform.
ConfigFile returns the default path to the configuration file.
EnvConfig returns a Config populated from environment variables.
LoadConfig reads the CLI configuration from the various filesystem locations and from the environment, returning a merged configuration along with any diagnostics (errors and warnings) encountered along the way.

# Constants

EnvCLI is the environment variable name to set additional CLI args.
No description provided by the author
No description provided by the author
No description provided by the author

# Variables

BuiltinConfig is the built-in defaults for the configuration.
Commands is the mapping of all the available Terraform commands.
The git commit that was compiled.
PluginOverrides are paths that override discovered plugins, set from the config file.
No description provided by the author
Ui is the cli.Ui used for communicating to the outside world.
No description provided by the author

# Structs

Config is the structure of the configuration for the Terraform CLI.
ConfigCredentialsHelper is the structure of the "credentials_helper" nested block within the CLI configuration.
ConfigHost is the structure of the "host" nested block within the CLI configuration, which can be used to override the default service host discovery behavior for a particular hostname.