Categorygithub.com/rai-project/dlframework
repositorypackage
0.2.22
Repository: https://github.com/rai-project/dlframework.git
Documentation: pkg.go.dev

# Packages

No description provided by the author
No description provided by the author
No description provided by the author
No description provided by the author
No description provided by the author
No description provided by the author
No description provided by the author

# README

DLFramework Build Status

Framework Manifest Format

name: MXNet # name of the framework
version: 0.1 # framework version
container: # containers used to perform model prediction
           # multiple platforms can be specified
  amd64:   # if unspecified, then the default container for the framework is used
    gpu: raiproject/carml-mxnet:amd64-cpu
    cpu: raiproject/carml-mxnet:amd64-gpu
  ppc64le:
    cpu: raiproject/carml-mxnet:ppc64le-gpu
    gpu: raiproject/carml-mxnet:ppc64le-gpu

Model Manifest Format

name: InceptionNet # name of your model
framework: # the framework to use
  name: MXNet # framework for the model
  version: ^0.1 # framework version constraint
version: 1.0 # version information in semantic version format
container: # containers used to perform model prediction
           # multiple platforms can be specified
  amd64:   # if unspecified, then the default container for the framework is used
    gpu: raiproject/carml-mxnet:amd64-cpu
    cpu: raiproject/carml-mxnet:amd64-gpu
  ppc64le:
    cpu: raiproject/carml-mxnet:ppc64le-gpu
    gpu: raiproject/carml-mxnet:ppc64le-gpu
description: >
  An image-classification convolutional network.
  Inception achieves 21.2% top-1 and 5.6% top-5 error on the ILSVRC 2012 validation dataset.
  It consists of fewer than 25M parameters.
references: # references to papers / websites / etc.. describing the model
  - https://arxiv.org/pdf/1512.00567.pdf
# license of the model
license: MIT
# inputs to the model 
inputs:
  # first input type for the model
  - type: image
    # description of the first input
    description: the input image
    parameters: # type parameters
      dimensions: [1, 3, 224, 224]
output:
  # the type of the output
  type: feature
  # a description of the output parameter
  description: the output label
  parameters:
    # type parameters 
    features_url: http://data.dmlc.ml/mxnet/models/imagenet/synset.txt
before_preprocess: >
  code... 
preprocess: >
  code... 
after_preprocess: >
  code... 
before_postprocess: >
  code... 
postprocess: >
  code... 
after_postprocess: >
  code... 
model: # specifies model graph and weights resources
  base_url: http://data.dmlc.ml/models/imagenet/inception-bn/
  graph_path: Inception-BN-symbol.json
  weights_path: Inception-BN-0126.params
  is_archive: false # if set, then the base_url is a url to an archive
                    # the graph_path and weights_path then denote the 
                    # file names of the graph and weights within the archive
attributes: # extra network attributes 
  kind: CNN # the kind of neural network (CNN, RNN, ...)
  training_dataset: ImageNet # dataset used to for training
  manifest_author: abduld
hidden: false # hide the model from the frontend