package
1.2.4
Repository: https://github.com/opencontainers/runc.git
Documentation: pkg.go.dev

# README

libcontainer

Go Reference

Libcontainer provides a native Go implementation for creating containers with namespaces, cgroups, capabilities, and filesystem access controls. It allows you to manage the lifecycle of the container performing additional operations after the container is created.

Container

A container is a self contained execution environment that shares the kernel of the host system and which is (optionally) isolated from other containers in the system.

Using libcontainer

Container init

Because containers are spawned in a two step process you will need a binary that will be executed as the init process for the container. In libcontainer, we use the current binary (/proc/self/exe) to be executed as the init process, and use arg "init", we call the first step process "bootstrap", so you always need a "init" function as the entry of "bootstrap".

In addition to the go init function the early stage bootstrap is handled by importing nsenter.

For details on how runc implements such "init", see init.go and libcontainer/init_linux.go.

Device management

If you want containers that have access to some devices, you need to import this package into your code:

    import (
        _ "github.com/opencontainers/runc/libcontainer/cgroups/devices"
    )

Without doing this, libcontainer cgroup manager won't be able to set up device access rules, and will fail if devices are specified in the container configuration.

Container creation

To create a container you first have to create a configuration struct describing how the container is to be created. A sample would look similar to this:

defaultMountFlags := unix.MS_NOEXEC | unix.MS_NOSUID | unix.MS_NODEV
var devices []*devices.Rule
for _, device := range specconv.AllowedDevices {
	devices = append(devices, &device.Rule)
}
config := &configs.Config{
	Rootfs: "/your/path/to/rootfs",
	Capabilities: &configs.Capabilities{
		Bounding: []string{
			"CAP_KILL",
			"CAP_AUDIT_WRITE",
		},
		Effective: []string{
			"CAP_KILL",
			"CAP_AUDIT_WRITE",
		},
		Permitted: []string{
			"CAP_KILL",
			"CAP_AUDIT_WRITE",
		},
	},
	Namespaces: configs.Namespaces([]configs.Namespace{
		{Type: configs.NEWNS},
		{Type: configs.NEWUTS},
		{Type: configs.NEWIPC},
		{Type: configs.NEWPID},
		{Type: configs.NEWUSER},
		{Type: configs.NEWNET},
		{Type: configs.NEWCGROUP},
	}),
	Cgroups: &configs.Cgroup{
		Name:   "test-container",
		Parent: "system",
		Resources: &configs.Resources{
			MemorySwappiness: nil,
			Devices:          devices,
		},
	},
	MaskPaths: []string{
		"/proc/kcore",
		"/sys/firmware",
	},
	ReadonlyPaths: []string{
		"/proc/sys", "/proc/sysrq-trigger", "/proc/irq", "/proc/bus",
	},
	Devices:  specconv.AllowedDevices,
	Hostname: "testing",
	Mounts: []*configs.Mount{
		{
			Source:      "proc",
			Destination: "/proc",
			Device:      "proc",
			Flags:       defaultMountFlags,
		},
		{
			Source:      "tmpfs",
			Destination: "/dev",
			Device:      "tmpfs",
			Flags:       unix.MS_NOSUID | unix.MS_STRICTATIME,
			Data:        "mode=755",
		},
		{
			Source:      "devpts",
			Destination: "/dev/pts",
			Device:      "devpts",
			Flags:       unix.MS_NOSUID | unix.MS_NOEXEC,
			Data:        "newinstance,ptmxmode=0666,mode=0620,gid=5",
		},
		{
			Device:      "tmpfs",
			Source:      "shm",
			Destination: "/dev/shm",
			Data:        "mode=1777,size=65536k",
			Flags:       defaultMountFlags,
		},
		{
			Source:      "mqueue",
			Destination: "/dev/mqueue",
			Device:      "mqueue",
			Flags:       defaultMountFlags,
		},
		{
			Source:      "sysfs",
			Destination: "/sys",
			Device:      "sysfs",
			Flags:       defaultMountFlags | unix.MS_RDONLY,
		},
	},
	UIDMappings: []configs.IDMap{
		{
			ContainerID: 0,
			HostID: 1000,
			Size: 65536,
		},
	},
	GIDMappings: []configs.IDMap{
		{
			ContainerID: 0,
			HostID: 1000,
			Size: 65536,
		},
	},
	Networks: []*configs.Network{
		{
			Type:    "loopback",
			Address: "127.0.0.1/0",
			Gateway: "localhost",
		},
	},
	Rlimits: []configs.Rlimit{
		{
			Type: unix.RLIMIT_NOFILE,
			Hard: uint64(1025),
			Soft: uint64(1025),
		},
	},
}

Once you have the configuration populated you can create a container with a specified ID under a specified state directory:

container, err := libcontainer.Create("/run/containers", "container-id", config)
if err != nil {
	logrus.Fatal(err)
	return
}

To spawn bash as the initial process inside the container and have the processes pid returned in order to wait, signal, or kill the process:

process := &libcontainer.Process{
	Args:   []string{"/bin/bash"},
	Env:    []string{"PATH=/bin"},
	User:   "daemon",
	Stdin:  os.Stdin,
	Stdout: os.Stdout,
	Stderr: os.Stderr,
	Init:   true,
}

err := container.Run(process)
if err != nil {
	container.Destroy()
	logrus.Fatal(err)
	return
}

// wait for the process to finish.
_, err := process.Wait()
if err != nil {
	logrus.Fatal(err)
}

// destroy the container.
container.Destroy()

Additional ways to interact with a running container are:

// return all the pids for all processes running inside the container.
processes, err := container.Processes()

// get detailed cpu, memory, io, and network statistics for the container and
// it's processes.
stats, err := container.Stats()

// pause all processes inside the container.
container.Pause()

// resume all paused processes.
container.Resume()

// send signal to container's init process.
container.Signal(signal)

// update container resource constraints.
container.Set(config)

// get current status of the container.
status, err := container.Status()

// get current container's state information.
state, err := container.State()

Checkpoint & Restore

libcontainer now integrates CRIU for checkpointing and restoring containers. This lets you save the state of a process running inside a container to disk, and then restore that state into a new process, on the same machine or on another machine.

criu version 1.5.2 or higher is required to use checkpoint and restore. If you don't already have criu installed, you can build it from source, following the online instructions. criu is also installed in the docker image generated when building libcontainer with docker.

Copyright and license

Code and documentation copyright 2014 Docker, inc. The code and documentation are released under the Apache 2.0 license. The documentation is also released under Creative Commons Attribution 4.0 International License. You may obtain a copy of the license, titled CC-BY-4.0, at http://creativecommons.org/licenses/by/4.0/.

# Packages

integration is used for integration testing of libcontainer.
Package specconv implements conversion of specifications to libcontainer configurations.
Package user is an alias for [github.com/moby/sys/user].
Deprecated: use github.com/moby/sys/userns.

# Functions

Create creates a new container with the given id inside a given state directory (root), and returns a Container object.
Init is part of "runc init" implementation.
Load takes a path to the state directory (root) and an id of an existing container, and returns a Container object reconstructed from the saved state.

# Constants

list of known message types we want to send to bootstrap program The number is randomly chosen to not conflict with known netlink types.
Created is the status that denotes the container exists but has not been run yet.
list of known message types we want to send to bootstrap program The number is randomly chosen to not conflict with known netlink types.
list of known message types we want to send to bootstrap program The number is randomly chosen to not conflict with known netlink types.
list of known message types we want to send to bootstrap program The number is randomly chosen to not conflict with known netlink types.
list of known message types we want to send to bootstrap program The number is randomly chosen to not conflict with known netlink types.
list of known message types we want to send to bootstrap program The number is randomly chosen to not conflict with known netlink types.
Paused is the status that denotes the container exists, but all its processes are paused.
list of known message types we want to send to bootstrap program The number is randomly chosen to not conflict with known netlink types.
Running is the status that denotes the container exists and is running.
list of known message types we want to send to bootstrap program The number is randomly chosen to not conflict with known netlink types.
Stopped is the status that denotes the container does not have a created or running process.
list of known message types we want to send to bootstrap program The number is randomly chosen to not conflict with known netlink types.
list of known message types we want to send to bootstrap program The number is randomly chosen to not conflict with known netlink types.
list of known message types we want to send to bootstrap program The number is randomly chosen to not conflict with known netlink types.

# Variables

# Structs

BaseState represents the platform agnostic pieces relating to a running container's state.
Bytemsg has the following representation | nlattr len | nlattr type | | value | pad |.
Container is a libcontainer container object.
IO holds the process's STDIO.
Process specifies the configuration and IO for a process inside a container.
State represents a running container's state.

# Type aliases

Status is the status of a container.