Categorygithub.com/noot/ring-go
modulepackage
0.0.0-20240617213643-1a8bebebd522
Repository: https://github.com/noot/ring-go.git
Documentation: pkg.go.dev

# README

ring-go

Implementation of linkable ring signatures using elliptic curve crypto in pure Go. It supports ring signatures over both ed25519 and secp256k1.

requirements

go 1.19

get

go get github.com/noot/ring-go

references

This implementation is based off of Ring Confidential Transactions, in particular section 2, which defines MLSAG (Multilayered Linkable Spontaneous Anonymous Group signatures).

usage

See examples/main.go.

package main

import (
	"fmt"

	ring "github.com/noot/ring-go"
	"golang.org/x/crypto/sha3"
)

func signAndVerify(curve ring.Curve) {
	privkey := curve.NewRandomScalar()
	msgHash := sha3.Sum256([]byte("helloworld"))

	// size of the public key ring (anonymity set)
	const size = 16

	// our key's secret index within the set
	const idx = 7
	
	keyring, err := ring.NewKeyRing(curve, size, privkey, idx)
	if err != nil {
		panic(err)
	}

	sig, err := keyring.Sign(msgHash, privkey)
	if err != nil {
		panic(err)
	}

	ok := sig.Verify(msgHash)
	if !ok {
		fmt.Println("failed to verify :(")
		return
	}

	fmt.Println("verified signature!")
}

func main() {
	fmt.Println("using secp256k1...")
	signAndVerify(ring.Secp256k1())
	fmt.Println("using ed25519...")
	signAndVerify(ring.Ed25519())
}

# Packages

No description provided by the author

# Functions

Ed25519 returns a new ed25519 curve instance.
Link returns true if the two signatures were created by the same signer, false otherwise.
NewFixedKeyRingFromPublicKeys takes public keys and a curve to create a ring.
NewKeyRing creates a ring with size specified by `size` and places the public key corresponding to `privkey` in index idx of the ring.
NewKeyRingFromPublicKeys takes public key ring and places the public key corresponding to `privkey` in index idx of the ring.
Secp256k1 returns a new secp256k1 curve instance.
Sign creates a ring signature on the given message using the provided private key and ring of public keys.

# Structs

Ring represents a group of public keys such that one of the group created a signature.
RingSig represents a ring signature.

# Type aliases

No description provided by the author