Categorygithub.com/leesper/go_rng
modulepackage
0.0.0-20190531154944-a612b043e353
Repository: https://github.com/leesper/go_rng.git
Documentation: pkg.go.dev

# README

go_rng

Build Status CircleCI GitHub stars GitHub license GoDoc

A pseudo-random number generator written in Golang v1.3 伪随机数生成器库的Go语言实现

Features

Inspired by:

Supported Distributions and Functionalities:

均匀分布 Uniform Distribution
伯努利分布 Bernoulli Distribution
卡方分布 Chi-Squared Distribution
Gamma分布 Gamma Distribution
Beta分布 Beta Distribution
费舍尔F分布 Fisher's F Distribution
柯西分布 Cauchy Distribution
韦伯分布 Weibull Distribution
Pareto分布 Pareto Distribution
对数高斯分布 Log Normal Distribution
指数分布 Exponential Distribution
学生T分布 Student's t-Distribution
二项分布 Binomial Distribution
泊松分布 Poisson Distribution
几何分布 Geometric Distribution
高斯分布 Gaussian Distribution
逻辑分布 Logistic Distribution
狄利克雷分布 Dirichlet Distribution

Requirements

  • Golang 1.7 and above

Installation

go get -u -v github.com/leesper/go_rng

Usage

func TestGaussianGenerator(t *testing.T) {
	fmt.Println("=====Testing for GaussianGenerator begin=====")
	grng := NewGaussianGenerator(time.Now().UnixNano())
	fmt.Println("Gaussian(5.0, 2.0): ")
	hist := map[int64]int{}
	for i := 0; i < 10000; i++ {
		hist[int64(grng.Gaussian(5.0, 2.0))]++
	}

	keys := []int64{}
	for k := range hist {
		keys = append(keys, k)
	}
	SortInt64Slice(keys)

	for _, key := range keys {
		fmt.Printf("%d:\t%s\n", key, strings.Repeat("*", hist[key]/200))
	}

	fmt.Println("=====Testing for GaussianGenerator end=====")
	fmt.Println()
}

output:

=====Testing for GaussianGenerator begin=====
Gaussian(5.0, 2.0):
-2:
-1:
0:	*
1:	**
2:	****
3:	*******
4:	*********
5:	*********
6:	*******
7:	****
8:	**
9:
10:
11:
12:
=====Testing for GaussianGenerator end=====

Authors and acknowledgment

Contributing

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change. Please make sure to update tests as appropriate.

# Functions

NewBernoulliGenerator returns a bernoulli-distribution generator it is recommended using time.Now().UnixNano() as the seed, for example: beng := rng.NewBernoulliGenerator(time.Now().UnixNano()).
NewBetaGenerator returns a beta distribution generator it is recommended using time.Now().UnixNano() as the seed, for example: brng := rng.NewBetaGenerator(time.Now().UnixNano()).
NewBinomialGenerator returns a binomial-distribution generator it is recommended using time.Now().UnixNano() as the seed, for example: bing := rng.NewBinomialGenerator(time.Now().UnixNano()).
NewCauchyGenerator returns a cauchy-distribution generator it is recommended using time.Now().UnixNano() as the seed, for example: crng := rng.NewCauchyGenerator(time.Now().UnixNano()).
NewChiSquaredGenerator returns a chi-squared distribution generator it is recommended using time.Now().UnixNano() as the seed, for example: crng := rng.NewChiSquaredGenerator(time.Now().UnixNano()).
NewDirichletGenerator returns a dirichlet-distribution generator it is recommended using time.Now().UnixNano() as the seed, for example: drng := rng.NewDirichletGenerator(time.Now().UnixNano()).
NewExpGenerator returns a exponential-distribution generator it is recommended using time.Now().UnixNano() as the seed, for example: erng := rng.NewExpGenerator(time.Now().UnixNano()).
NewFisherFGenerator returns a Fisher's F distribution generator it is recommended using time.Now().UnixNano() as the seed, for example: frng := rng.NewFisherFGenerator(time.Now().UnixNano()).
NewGammaGenerator returns a gamma distribution generator it is recommended using time.Now().UnixNano() as the seed, for example: grng := rng.NewGammaGenerator(time.Now().UnixNano()).
NewGaussianGenerator returns a gaussian-distribution generator it is recommended using time.Now().UnixNano() as the seed, for example: crng := rng.NewGaussianGenerator(time.Now().UnixNano()).
NewGeometricGenerator returns a geometric-distribution generator it is recommended using time.Now().UnixNano() as the seed, for example: grng := rng.NewGeometricGenerator(time.Now().UnixNano()).
NewLogisticGenerator returns a logistic-distribution generator it is recommended using time.Now().UnixNano() as the seed, for example: lrng := rng.NewLogisticGenerator(time.Now().UnixNano()).
NewLognormalGenerator returns a lognormal-distribution generator it is recommended using time.Now().UnixNano() as the seed, for example: crng := rng.NewLognormalGenerator(time.Now().UnixNano()).
NewParetoGenerator returns a type I pareto-distribution generator it is recommended using time.Now().UnixNano() as the seed, for example: crng := rng.NewParetoGenerator(time.Now().UnixNano()).
NewPoissonGenerator returns a possion-distribution generator it is recommended using time.Now().UnixNano() as the seed, for example: prng := rng.NewPoissonGenerator(time.Now().UnixNano()).
NewStudentTGenerator returns a student-t distribution generator it is recommended using time.Now().UnixNano() as the seed, for example: stng := rng.NewStudentTGenerator(time.Now().UnixNano()).
NewTriangularGenerator returns a Triangular-distribution generator.
NewUniformGenerator returns a uniform-distribution generator it is recommended using time.Now().UnixNano() as the seed, for example: urng := rng.NewUniformGenerator(time.Now().UnixNano()).
NewWeibullGenerator returns a weibull-distribution generator it is recommended using time.Now().UnixNano() as the seed, for example: wrng := rng.NewWeibullGenerator(time.Now().UnixNano()).

# Structs

UniformGenerator is a random number generator for uniform distribution.
BetaGenerator is a random number generator for beta distribution.
BinomialGenerator is a random number generator for binomial distribution.
CauchyGenerator is a random number generator for cauchy distribution.
ChiSquaredGenerator is a random number generator for chi-squared distribution.
DirichletGenerator is a random number generator for dirichlet distribution.
ExpGenerator is a random number generator for exponential distribution.
FisherFGenerator is a random number generator for Fisher's F distribution.
GammaGenerator is a random number generator for gamma distribution.
GaussianGenerator is a random number generator for gaussian distribution.
GeometricGenerator is a random number generator for geometric distribution.
LogisticGenerator is a random number generator for logistic distribution.
LognormalGenerator is a random number generator for lognormal distribution.
ParetoGenerator is a random number generator for type I pareto distribution.
PoissonGenerator is a random number generator for possion distribution.
StudentTGenerator is a random number generator for student-t distribution.
TriangularGenerator is a random number generator for Triangular distribution.
UniformGenerator is a random number generator for uniform distribution.
WeibullGenerator is a random number generator for weibull distribution.