# Functions
Create an array.
Return a fixed frequency DatetimeIndex with business day as the default.
Concatenate pandas objects along a particular axis.
Compute a simple cross tabulation of two (or more) factors.
Bin values into discrete intervals.
Return a fixed frequency DatetimeIndex.
eval(expr, parser='pandas', engine=None, local_dict=None, global_dict=None, resolvers=(), level=0, target=None, inplace=False)
See https://pandas.pydata.org/docs/reference/api/pandas.eval.html#pandas.eval
go:linkname Eval py.eval.
Encode the object as an enumerated type or categorical variable.
Create a categorical “DataFrame“ from a “DataFrame“ of dummy variables.
Convert categorical variable into dummy/indicator variables.
Infer the most likely frequency given the input index.
Return a fixed frequency IntervalIndex.
Detect missing values for an array-like object.
Detect missing values for an array-like object.
Normalize semi-structured JSON data into a flat table.
Reshape wide-format data to long.
Unpivot a DataFrame from wide to long format, optionally leaving identifiers set.
Merge DataFrame or named Series objects with a database-style join.
Perform a merge by key distance.
Perform a merge for ordered data with optional filling/interpolation.
Detect non-missing values for an array-like object.
Detect non-missing values for an array-like object.
Return a fixed frequency PeriodIndex.
Return reshaped DataFrame organized by given index / column values.
Create a spreadsheet-style pivot table as a DataFrame.
Quantile-based discretization function.
Read text from clipboard and pass to :func:`~pandas.read_csv`.
See https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html
go:linkname ReadCsv py.read_csv.
read_excel(io, sheet_name=0, *, header=0, names=None, index_col=None, usecols=None, dtype=None, engine=None, converters=None, true_values=None, false_values=None, skiprows=None, nrows=None, na_values=None, keep_default_na=True, na_filter=True, verbose=False, parse_dates=False, date_parser=_NoDefault.no_default, date_format=None, thousands=None, decimal='.', comment=None, skipfooter=0, storage_options=None, dtype_backend=_NoDefault.no_default, engine_kwargs=None)
See https://pandas.pydata.org/docs/reference/api/pandas.read_excel.html
go:linkname ReadExcel py.read_excel.
Load a feather-format object from the file path.
Read a table of fixed-width formatted lines into DataFrame.
Load data from Google BigQuery.
Read from the store, close it if we opened it.
Read HTML tables into a “list“ of “DataFrame“ objects.
Convert a JSON string to pandas object.
Load an ORC object from the file path, returning a DataFrame.
Load a parquet object from the file path, returning a DataFrame.
Load pickled pandas object (or any object) from file.
Read SAS files stored as either XPORT or SAS7BDAT format files.
Load an SPSS file from the file path, returning a DataFrame.
Read SQL query or database table into a DataFrame.
Read SQL query into a DataFrame.
Read SQL database table into a DataFrame.
Read Stata file into DataFrame.
Read general delimited file into DataFrame.
Read XML document into a :class:`~pandas.DataFrame` object.
Format float representation in DataFrame with SI notation.
show_versions(as_json=False)
See https://pandas.pydata.org/docs/reference/api/pandas.show_versions.html
go:linkname ShowVersions py.show_versions.
Run the pandas test suite using pytest.
Return a fixed frequency TimedeltaIndex with day as the default.
Convert argument to datetime.
Convert argument to a numeric type.
Pickle (serialize) object to file.
Convert argument to timedelta.
Return unique values based on a hash table.
Compute a histogram of the counts of non-null values.
Unpivot a DataFrame from wide to long format.
# Constants
No description provided by the author