Categorygithub.com/etherzero-org/go-etherzero
modulepackage
2.0.8+incompatible
Repository: https://github.com/etherzero-org/go-etherzero.git
Documentation: pkg.go.dev

# README

Go EtherZero

Official golang implementation of the EtherZero protocol.

Building the source

Building geth requires both a Go (version 1.10.1 or later) and a C compiler. You can install them using your favourite package manager. Once the dependencies are installed, run

make

Executables

The go-etherzero project comes with several wrappers/executables found in the cmd directory.

CommandDescription
gethOur main Etherzero CLI client. It is the entry point into the Etherzero network (main-, test- or private net), capable of running as a full node (default) archive node (retaining all historical state) or a light node (retrieving data live). It can be used by other processes as a gateway into the Etherzero network via JSON RPC endpoints exposed on top of HTTP, WebSocket and/or IPC transports. geth --help and the CLI Wiki page for command line options.
abigenSource code generator to convert Etherzero contract definitions into easy to use, compile-time type-safe Go packages. It operates on plain Etherzero contract ABIs with expanded functionality if the contract bytecode is also available. However it also accepts Solidity source files, making development much more streamlined. Please see our Native DApps wiki page for details.
bootnodeStripped down version of our Etherzero client implementation that only takes part in the network node discovery protocol, but does not run any of the higher level application protocols. It can be used as a lightweight bootstrap node to aid in finding peers in private networks.
evmDeveloper utility version of the EVM (Etherzero Virtual Machine) that is capable of running bytecode snippets within a configurable environment and execution mode. Its purpose is to allow isolated, fine-grained debugging of EVM opcodes (e.g. evm --code 60ff60ff --debug).
gethrpctestDeveloper utility tool to support our ethereum/rpc-test test suite which validates baseline conformity to the Ethereum JSON RPC specs. Please see the test suite's readme for details.
rlpdumpDeveloper utility tool to convert binary RLP (Recursive Length Prefix) dumps (data encoding used by the Ethereum protocol both network as well as consensus wise) to user friendlier hierarchical representation (e.g. rlpdump --hex CE0183FFFFFFC4C304050583616263).
swarmswarm daemon and tools. This is the entrypoint for the swarm network. swarm --help for command line options and subcommands. See https://swarm-guide.readthedocs.io for swarm documentation.
puppetha CLI wizard that aids in creating a new Etherzero network.

Running geth

Going through all the possible command line flags is out of scope here, but we've enumerated a few common parameter combos to get you up to speed quickly on how you can run your own Geth instance.

Full node on the main Etherzero network

$ geth console

Etherzero test network for development

Transitioning towards developers, if you'd like to play around with creating Etherzero contracts, you almost certainly would like to do that without any real money involved until you get the hang of the entire system. In other words, instead of attaching to the main network, you want to join the test network with your node, which is fully equivalent to the main network, but with play-Ether only.

$ geth --testnet --masternode --nodekeyhex "a9b50794ab7a9987aa416c455c13aa6cc8c0448c501a3ce8e4840efe47cb5c29" --rpc --rpcvhosts "*" --rpccorsdomain "*" console

> miner.start()

The console subcommand have the exact same meaning as above and they are equally useful on the testnet too. Please see above for their explanations if you've skipped to here.

Specifying the --testnet flag however will reconfigure your Geth instance a bit:

  • Instead of using the default data directory (~/.etherzero on Linux for example), Geth will nest itself one level deeper into a testnet subfolder (~/.etherzero/testnet on Linux). Note, on OSX and Linux this also means that attaching to a running testnet node requires the use of a custom endpoint since geth attach will try to attach to a production node endpoint by default. E.g. geth attach <datadir>/testnet/geth.ipc. Windows users are not affected by this.
  • Instead of connecting the main Etherzero network, the client will connect to the test network, which uses different P2P bootnodes, different network IDs and genesis states.

Note: Although there are some internal protective measures to prevent transactions from crossing over between the main network and test network, you should make sure to always use separate accounts for play-money and real-money. Unless you manually move accounts, Geth will by default correctly separate the two networks and will not make any accounts available between them.

Docker quick start

One of the quickest ways to get Etherzero up and running on your machine is by using Docker:

docker run -d --name etherzero-node -v /Users/alice/etherzero:/root \
           -p 9646:9646 -p 21212:21212 \
           Etherzero/client-go

This will start geth in fast-sync mode with a DB memory allowance of 1GB just as the above command does. It will also create a persistent volume in your home directory for saving your blockchain as well as map the default ports. There is also an alpine tag available for a slim version of the image.

Do not forget --rpcaddr 0.0.0.0, if you want to access RPC from other containers and/or hosts. By default, geth binds to the local interface and RPC endpoints is not accessible from the outside.

Programatically interfacing Geth nodes

As a developer, sooner rather than later you'll want to start interacting with Geth and the Etherzero network via your own programs and not manually through the console. To aid this, Geth has built-in support for a JSON-RPC based APIs (standard APIs and Geth specific APIs). These can be exposed via HTTP, WebSockets and IPC (unix sockets on unix based platforms, and named pipes on Windows).

The IPC interface is enabled by default and exposes all the APIs supported by Geth, whereas the HTTP and WS interfaces need to manually be enabled and only expose a subset of APIs due to security reasons. These can be turned on/off and configured as you'd expect.

HTTP based JSON-RPC API options:

  • --rpc Enable the HTTP-RPC server
  • --rpcaddr HTTP-RPC server listening interface (default: "localhost")
  • --rpcport HTTP-RPC server listening port (default: `9646)
  • --rpcapi API's offered over the HTTP-RPC interface (default: "eth,net,web3")
  • --rpccorsdomain Comma separated list of domains from which to accept cross origin requests (browser enforced)
  • --ws Enable the WS-RPC server
  • --wsaddr WS-RPC server listening interface (default: "localhost")
  • --wsport WS-RPC server listening port (default: 8546)
  • --wsapi API's offered over the WS-RPC interface (default: "eth,net,web3")
  • --wsorigins Origins from which to accept websockets requests
  • --ipcdisable Disable the IPC-RPC server
  • --ipcapi API's offered over the IPC-RPC interface (default: "admin,debug,eth,miner,net,personal,shh,txpool,web3")
  • --ipcpath Filename for IPC socket/pipe within the datadir (explicit paths escape it)

You'll need to use your own programming environments' capabilities (libraries, tools, etc) to connect via HTTP, WS or IPC to a Geth node configured with the above flags and you'll need to speak JSON-RPC on all transports. You can reuse the same connection for multiple requests!

Note: Please understand the security implications of opening up an HTTP/WS based transport before doing so! Hackers on the internet are actively trying to subvert Etherzero nodes with exposed APIs! Further, all browser tabs can access locally running webservers, so malicious webpages could try to subvert locally available APIs!

Operating a private network

Maintaining your own private network is more involved as a lot of configurations taken for granted in the official networks need to be manually set up.

Defining the private genesis state

First, you'll need to create the genesis state of your networks, which all nodes need to be aware of and agree upon. This consists of a small JSON file (e.g. call it genesis.json):

{
  "config": {
        "chainId": 0,
        "homesteadBlock": 0,
        "eip155Block": 0,
        "eip158Block": 0
    },
  "alloc"      : {},
  "coinbase"   : "0x0000000000000000000000000000000000000000",
  "difficulty" : "0x20000",
  "extraData"  : "",
  "gasLimit"   : "0x2fefd8",
  "nonce"      : "0x0000000000000042",
  "mixhash"    : "0x0000000000000000000000000000000000000000000000000000000000000000",
  "parentHash" : "0x0000000000000000000000000000000000000000000000000000000000000000",
  "timestamp"  : "0x00"
}

The above fields should be fine for most purposes, although we'd recommend changing the nonce to some random value so you prevent unknown remote nodes from being able to connect to you. If you'd like to pre-fund some accounts for easier testing, you can populate the alloc field with account configs:

"alloc": {
  "0x0000000000000000000000000000000000000001": {"balance": "111111111"},
  "0x0000000000000000000000000000000000000002": {"balance": "222222222"}
}

With the genesis state defined in the above JSON file, you'll need to initialize every Geth node with it prior to starting it up to ensure all blockchain parameters are correctly set:

$ geth init path/to/genesis.json

Creating the rendezvous point

With all nodes that you want to run initialized to the desired genesis state, you'll need to start a bootstrap node that others can use to find each other in your network and/or over the internet. The clean way is to configure and run a dedicated bootnode:

$ bootnode --genkey=boot.key
$ bootnode --nodekey=boot.key

With the bootnode online, it will display an enode URL that other nodes can use to connect to it and exchange peer information. Make sure to replace the displayed IP address information (most probably [::]) with your externally accessible IP to get the actual enode URL.

Note: You could also use a full fledged Geth node as a bootnode, but it's the less recommended way.

Starting up your member nodes

With the bootnode operational and externally reachable (you can try telnet <ip> <port> to ensure it's indeed reachable), start every subsequent Geth node pointed to the bootnode for peer discovery via the --bootnodes flag. It will probably also be desirable to keep the data directory of your private network separated, so do also specify a custom --datadir flag.

$ geth --datadir=path/to/custom/data/folder --bootnodes=<bootnode-enode-url-from-above>

Note: Since your network will be completely cut off from the main and test networks, you'll also need to configure a miner to process transactions and create new blocks for you.

Running a private miner

Mining on the public Etherzero network is a complex task as it's only feasible using GPUs, requiring an OpenCL or CUDA enabled ethminer instance. For information on such a setup, please consult the EtherMining subreddit and the Genoil miner repository.

In a private network setting however, a single CPU miner instance is more than enough for practical purposes as it can produce a stable stream of blocks at the correct intervals without needing heavy resources (consider running on a single thread, no need for multiple ones either). To start a Geth instance for mining, run it with all your usual flags, extended by:

$ geth <usual-flags> --mine --minerthreads=1 --etherbase=0x0000000000000000000000000000000000000000

Which will start mining blocks and transactions on a single CPU thread, crediting all proceedings to the account specified by --etherbase. You can further tune the mining by changing the default gas limit blocks converge to (--targetgaslimit) and the price transactions are accepted at (--gasprice).

License

The go-ethereum library (i.e. all code outside of the cmd directory) is licensed under the GNU Lesser General Public License v3.0, also included in our repository in the COPYING.LESSER file.

The go-ethereum binaries (i.e. all code inside of the cmd directory) is licensed under the GNU General Public License v3.0, also included in our repository in the COPYING file.

# Packages

Package accounts implements high level Ethereum account management.
No description provided by the author
Package common contains various helper functions.
Package consensus implements different Ethereum consensus engines.
No description provided by the author
No description provided by the author
Package core implements the Ethereum consensus protocol.
No description provided by the author
No description provided by the author
Package eth implements the Ethereum protocol.
Package ethclient provides a client for the Ethereum RPC API.
No description provided by the author
Package ethstats implements the network stats reporting service.
Package event deals with subscriptions to real-time events.
Package les implements the Light Ethereum Subprotocol.
Package light implements on-demand retrieval capable state and chain objects for the Ethereum Light Client.
Package log15 provides an opinionated, simple toolkit for best-practice logging that is both human and machine readable.
Go port of Coda Hale's Metrics library <https://github.com/rcrowley/go-metrics> Coda Hale's original work: <https://github.com/codahale/metrics>.
Package miner implements Ethereum block creation and mining.
Package geth contains the simplified mobile APIs to go-ethereum.
Package node sets up multi-protocol Ethereum nodes.
Package p2p implements the Ethereum p2p network protocols.
No description provided by the author
Package rlp implements the RLP serialization format.
Package rpc provides access to the exported methods of an object across a network or other I/O connection.
No description provided by the author
No description provided by the author
Package tests implements execution of Ethereum JSON tests.
Package trie implements Merkle Patricia Tries.
No description provided by the author

# Variables

NotFound is returned by API methods if the requested item does not exist.

# Structs

CallMsg contains parameters for contract calls.
FilterQuery contains options for contract log filtering.
SyncProgress gives progress indications when the node is synchronising with the Ethereum network.

# Interfaces

ChainReader provides access to the blockchain.
ChainStateReader wraps access to the state trie of the canonical blockchain.
ChainSyncReader wraps access to the node's current sync status.
A ContractCaller provides contract calls, essentially transactions that are executed by the EVM but not mined into the blockchain.
GasEstimator wraps EstimateGas, which tries to estimate the gas needed to execute a specific transaction based on the pending state.
GasPricer wraps the gas price oracle, which monitors the blockchain to determine the optimal gas price given current fee market conditions.
LogFilterer provides access to contract log events using a one-off query or continuous event subscription.
PendingContractCaller can be used to perform calls against the pending state.
A PendingStateEventer provides access to real time notifications about changes to the pending state.
A PendingStateReader provides access to the pending state, which is the result of all known executable transactions which have not yet been included in the blockchain.
Subscription represents an event subscription where events are delivered on a data channel.
TransactionReader provides access to past transactions and their receipts.
TransactionSender wraps transaction sending.