Categorygithub.com/ethereum/go-ethereum
modulepackage
1.15.2
Repository: https://github.com/ethereum/go-ethereum.git
Documentation: pkg.go.dev

# README

Go Ethereum

Golang execution layer implementation of the Ethereum protocol.

API Reference Go Report Card Travis Discord

Automated builds are available for stable releases and the unstable master branch. Binary archives are published at https://geth.ethereum.org/downloads/.

Building the source

For prerequisites and detailed build instructions please read the Installation Instructions.

Building geth requires both a Go (version 1.22 or later) and a C compiler. You can install them using your favourite package manager. Once the dependencies are installed, run

make geth

or, to build the full suite of utilities:

make all

Executables

The go-ethereum project comes with several wrappers/executables found in the cmd directory.

CommandDescription
gethOur main Ethereum CLI client. It is the entry point into the Ethereum network (main-, test- or private net), capable of running as a full node (default), archive node (retaining all historical state) or a light node (retrieving data live). It can be used by other processes as a gateway into the Ethereum network via JSON RPC endpoints exposed on top of HTTP, WebSocket and/or IPC transports. geth --help and the CLI page for command line options.
clefStand-alone signing tool, which can be used as a backend signer for geth.
devp2pUtilities to interact with nodes on the networking layer, without running a full blockchain.
abigenSource code generator to convert Ethereum contract definitions into easy-to-use, compile-time type-safe Go packages. It operates on plain Ethereum contract ABIs with expanded functionality if the contract bytecode is also available. However, it also accepts Solidity source files, making development much more streamlined. Please see our Native DApps page for details.
evmDeveloper utility version of the EVM (Ethereum Virtual Machine) that is capable of running bytecode snippets within a configurable environment and execution mode. Its purpose is to allow isolated, fine-grained debugging of EVM opcodes (e.g. evm --code 60ff60ff --debug run).
rlpdumpDeveloper utility tool to convert binary RLP (Recursive Length Prefix) dumps (data encoding used by the Ethereum protocol both network as well as consensus wise) to user-friendlier hierarchical representation (e.g. rlpdump --hex CE0183FFFFFFC4C304050583616263).

Running geth

Going through all the possible command line flags is out of scope here (please consult our CLI Wiki page), but we've enumerated a few common parameter combos to get you up to speed quickly on how you can run your own geth instance.

Hardware Requirements

Minimum:

  • CPU with 4+ cores
  • 8GB RAM
  • 1TB free storage space to sync the Mainnet
  • 8 MBit/sec download Internet service

Recommended:

  • Fast CPU with 8+ cores
  • 16GB+ RAM
  • High-performance SSD with at least 1TB of free space
  • 25+ MBit/sec download Internet service

Full node on the main Ethereum network

By far the most common scenario is people wanting to simply interact with the Ethereum network: create accounts; transfer funds; deploy and interact with contracts. For this particular use case, the user doesn't care about years-old historical data, so we can sync quickly to the current state of the network. To do so:

$ geth console

This command will:

  • Start geth in snap sync mode (default, can be changed with the --syncmode flag), causing it to download more data in exchange for avoiding processing the entire history of the Ethereum network, which is very CPU intensive.
  • Start the built-in interactive JavaScript console, (via the trailing console subcommand) through which you can interact using web3 methods (note: the web3 version bundled within geth is very old, and not up to date with official docs), as well as geth's own management APIs. This tool is optional and if you leave it out you can always attach it to an already running geth instance with geth attach.

A Full node on the Holesky test network

Transitioning towards developers, if you'd like to play around with creating Ethereum contracts, you almost certainly would like to do that without any real money involved until you get the hang of the entire system. In other words, instead of attaching to the main network, you want to join the test network with your node, which is fully equivalent to the main network, but with play-Ether only.

$ geth --holesky console

The console subcommand has the same meaning as above and is equally useful on the testnet too.

Specifying the --holesky flag, however, will reconfigure your geth instance a bit:

  • Instead of connecting to the main Ethereum network, the client will connect to the Holesky test network, which uses different P2P bootnodes, different network IDs and genesis states.
  • Instead of using the default data directory (~/.ethereum on Linux for example), geth will nest itself one level deeper into a holesky subfolder (~/.ethereum/holesky on Linux). Note, on OSX and Linux this also means that attaching to a running testnet node requires the use of a custom endpoint since geth attach will try to attach to a production node endpoint by default, e.g., geth attach <datadir>/holesky/geth.ipc. Windows users are not affected by this.

Note: Although some internal protective measures prevent transactions from crossing over between the main network and test network, you should always use separate accounts for play and real money. Unless you manually move accounts, geth will by default correctly separate the two networks and will not make any accounts available between them.

Configuration

As an alternative to passing the numerous flags to the geth binary, you can also pass a configuration file via:

$ geth --config /path/to/your_config.toml

To get an idea of how the file should look like you can use the dumpconfig subcommand to export your existing configuration:

$ geth --your-favourite-flags dumpconfig

Docker quick start

One of the quickest ways to get Ethereum up and running on your machine is by using Docker:

docker run -d --name ethereum-node -v /Users/alice/ethereum:/root \
           -p 8545:8545 -p 30303:30303 \
           ethereum/client-go

This will start geth in snap-sync mode with a DB memory allowance of 1GB, as the above command does. It will also create a persistent volume in your home directory for saving your blockchain as well as map the default ports. There is also an alpine tag available for a slim version of the image.

Do not forget --http.addr 0.0.0.0, if you want to access RPC from other containers and/or hosts. By default, geth binds to the local interface and RPC endpoints are not accessible from the outside.

Programmatically interfacing geth nodes

As a developer, sooner rather than later you'll want to start interacting with geth and the Ethereum network via your own programs and not manually through the console. To aid this, geth has built-in support for a JSON-RPC based APIs (standard APIs and geth specific APIs). These can be exposed via HTTP, WebSockets and IPC (UNIX sockets on UNIX based platforms, and named pipes on Windows).

The IPC interface is enabled by default and exposes all the APIs supported by geth, whereas the HTTP and WS interfaces need to manually be enabled and only expose a subset of APIs due to security reasons. These can be turned on/off and configured as you'd expect.

HTTP based JSON-RPC API options:

  • --http Enable the HTTP-RPC server
  • --http.addr HTTP-RPC server listening interface (default: localhost)
  • --http.port HTTP-RPC server listening port (default: 8545)
  • --http.api API's offered over the HTTP-RPC interface (default: eth,net,web3)
  • --http.corsdomain Comma separated list of domains from which to accept cross-origin requests (browser enforced)
  • --ws Enable the WS-RPC server
  • --ws.addr WS-RPC server listening interface (default: localhost)
  • --ws.port WS-RPC server listening port (default: 8546)
  • --ws.api API's offered over the WS-RPC interface (default: eth,net,web3)
  • --ws.origins Origins from which to accept WebSocket requests
  • --ipcdisable Disable the IPC-RPC server
  • --ipcpath Filename for IPC socket/pipe within the datadir (explicit paths escape it)

You'll need to use your own programming environments' capabilities (libraries, tools, etc) to connect via HTTP, WS or IPC to a geth node configured with the above flags and you'll need to speak JSON-RPC on all transports. You can reuse the same connection for multiple requests!

Note: Please understand the security implications of opening up an HTTP/WS based transport before doing so! Hackers on the internet are actively trying to subvert Ethereum nodes with exposed APIs! Further, all browser tabs can access locally running web servers, so malicious web pages could try to subvert locally available APIs!

Operating a private network

Maintaining your own private network is more involved as a lot of configurations taken for granted in the official networks need to be manually set up.

Unfortunately since the Merge it is no longer possible to easily set up a network of geth nodes without also setting up a corresponding beacon chain.

There are three different solutions depending on your use case:

  • If you are looking for a simple way to test smart contracts from go in your CI, you can use the Simulated Backend.
  • If you want a convenient single node environment for testing, you can use our Dev Mode.
  • If you are looking for a multiple node test network, you can set one up quite easily with Kurtosis.

Contribution

Thank you for considering helping out with the source code! We welcome contributions from anyone on the internet, and are grateful for even the smallest of fixes!

If you'd like to contribute to go-ethereum, please fork, fix, commit and send a pull request for the maintainers to review and merge into the main code base. If you wish to submit more complex changes though, please check up with the core devs first on our Discord Server to ensure those changes are in line with the general philosophy of the project and/or get some early feedback which can make both your efforts much lighter as well as our review and merge procedures quick and simple.

Please make sure your contributions adhere to our coding guidelines:

  • Code must adhere to the official Go formatting guidelines (i.e. uses gofmt).
  • Code must be documented adhering to the official Go commentary guidelines.
  • Pull requests need to be based on and opened against the master branch.
  • Commit messages should be prefixed with the package(s) they modify.
    • E.g. "eth, rpc: make trace configs optional"

Please see the Developers' Guide for more details on configuring your environment, managing project dependencies, and testing procedures.

Contributing to geth.ethereum.org

For contributions to the go-ethereum website, please checkout and raise pull requests against the website branch. For more detailed instructions please see the website branch README or the contributing page of the website.

License

The go-ethereum library (i.e. all code outside of the cmd directory) is licensed under the GNU Lesser General Public License v3.0, also included in our repository in the COPYING.LESSER file.

The go-ethereum binaries (i.e. all code inside of the cmd directory) are licensed under the GNU General Public License v3.0, also included in our repository in the COPYING file.

# Packages

Package accounts implements high level Ethereum account management.
Package common contains various helper functions.
Package consensus implements different Ethereum consensus engines.
Package core implements the Ethereum consensus protocol.
Package eth implements the Ethereum protocol.
Package ethclient provides a client for the Ethereum RPC API.
Package ethdb defines the interfaces for an Ethereum data store.
Package ethstats implements the network stats reporting service.
Package event deals with subscriptions to real-time events.
Package graphql provides a GraphQL interface to Ethereum node data.
Package miner implements Ethereum block creation and mining.
Package node sets up multi-protocol Ethereum nodes.
Package p2p implements the Ethereum p2p network protocols.
Package rlp implements the RLP serialization format.
Package rpc implements bi-directional JSON-RPC 2.0 on multiple transports.
Package tests implements execution of Ethereum JSON tests.
Package trie implements Merkle Patricia Tries.

# Variables

NotFound is returned by API methods if the requested item does not exist.

# Structs

CallMsg contains parameters for contract calls.
FeeHistory provides recent fee market data that consumers can use to determine a reasonable maxPriorityFeePerGas value.
FilterQuery contains options for contract log filtering.
SyncProgress gives progress indications when the node is synchronising with the Ethereum network.

# Interfaces

BlockNumberReader provides access to the current block number.
ChainIDReader provides access to the chain ID.
ChainReader provides access to the blockchain.
ChainStateReader wraps access to the state trie of the canonical blockchain.
ChainSyncReader wraps access to the node's current sync status.
A ContractCaller provides contract calls, essentially transactions that are executed by the EVM but not mined into the blockchain.
FeeHistoryReader provides access to the fee history oracle.
GasEstimator wraps EstimateGas, which tries to estimate the gas needed to execute a specific transaction based on the pending state.
GasPricer wraps the gas price oracle, which monitors the blockchain to determine the optimal gas price given current fee market conditions.
GasPricer1559 provides access to the EIP-1559 gas price oracle.
LogFilterer provides access to contract log events using a one-off query or continuous event subscription.
PendingContractCaller can be used to perform calls against the pending state.
A PendingStateEventer provides access to real time notifications about changes to the pending state.
A PendingStateReader provides access to the pending state, which is the result of all known executable transactions which have not yet been included in the blockchain.
Subscription represents an event subscription where events are delivered on a data channel.
TransactionReader provides access to past transactions and their receipts.
TransactionSender wraps transaction sending.