Categorygithub.com/dgrisham/go-bitswap
modulepackage
1.0.11
Repository: https://github.com/dgrisham/go-bitswap.git
Documentation: pkg.go.dev

# README

go-bitswap

Coverage Status Travis CI

An implementation of the bitswap protocol in go!

Table of Contents

Protocol

Bitswap is the data trading module for ipfs, it manages requesting and sending blocks to and from other peers in the network. Bitswap has two main jobs, the first is to acquire blocks requested by the client from the network. The second is to judiciously send blocks in its possession to other peers who want them.

Bitswap is a message based protocol, as opposed to response-reply. All messages contain wantlists, or blocks. Upon receiving a wantlist, a node should consider sending out wanted blocks if they have them. Upon receiving blocks, the node should send out a notification called a 'Cancel' signifying that they no longer want the block. At a protocol level, bitswap is very simple.

Implementation

Internally, when a message with a wantlist is received, it is sent to the decision engine to be considered, and blocks that we have that are wanted are placed into the peer request queue. Any block we possess that is wanted by another peer has a task in the peer request queue created for it. The peer request queue is a priority queue that sorts available tasks by some metric, currently, that metric is very simple and aims to fairly address the tasks of each other peer. More advanced decision logic will be implemented in the future. Task workers pull tasks to be done off of the queue, retrieve the block to be sent, and send it off. The number of task workers is limited by a constant factor.

Client requests for new blocks are handled by the want manager, for every new block (or set of blocks) wanted, the 'WantBlocks' method is invoked. The want manager then ensures that connected peers are notified of the new block that we want by sending the new entries to a message queue for each peer. The message queue will loop while there is work available and do the following: 1) Ensure it has a connection to its peer, 2) grab the message to be sent, and 3) send it. If new messages are added while the loop is in steps 1 or 3, the messages are combined into one to avoid having to keep an actual queue and send multiple messages. The same process occurs when the client receives a block and sends a cancel message for it.

Contribute

PRs are welcome!

Small note: If editing the Readme, please conform to the standard-readme specification.

License

MIT © Juan Batiz-Benet

# Packages

package decision implements the decision engine for the bitswap service.
No description provided by the author
No description provided by the author
No description provided by the author
No description provided by the author
package wantlist implements an object for bitswap that contains the keys that a given peer wants.

# Functions

session creates a test bitswap session.
New initializes a BitSwap instance that communicates over the provided BitSwapNetwork.
WARNING: this uses RandTestBogusIdentity DO NOT USE for NON TESTS!.
No description provided by the author

# Variables

No description provided by the author
No description provided by the author
No description provided by the author

# Structs

Bitswap instances implement the bitswap protocol.
No description provided by the author
Session holds state for an individual bitswap transfer operation.
TODO move this SessionGenerator to the core package and export it as the core generator.
No description provided by the author
No description provided by the author