package
0.3.11
Repository: https://github.com/c3sr/dlframework.git
Documentation: pkg.go.dev

# README

MLModelScope Agent Sever Commands

Note that evaluations currently only run on datasets known by DLDataset

Running Evaluations

One can run evaluations across different frameworks and models or on a single framework and model.

Running Evaluations on all Frameworks / Models

evaluate.go is a wrapper tool exists to make it easier to run evaluations across frameworks and models. One can specify the frameworks, models, and batch sizes to use within the file and then run evaluate.go.

  • [ ]: TODO: allow one to specify the frameworks, models, and batch sizes from the command line

Running Evaluations on a single Framework / Model

Example Usage

./tensorflow_agent dataset --debug --verbose --publish=true --fail_on_error=true --gpu=true --batch_size=320 --model_name=BVLC-Reference-CaffeNet --model_version=1.0 --database_name=tx2_carml_model_trace --database_address=minsky1-1.csl.illinois.edu --publish_predictions=false --num_file_parts=8 --trace_level=FULL_TRACE

Command line options

Available Models

agent info models

Checking Divergence

  • [ ]: TODO

To compare a single prediction's divergence you use

agent database divergence --database_address=$DATABASE_ADDR --database_name=carml --source=$SOURCE_ID --target=$TARGET_ID

Analysing / Summarizing Results

  • [ ]: TODO
agent evaluation --help

# Functions

Get preferred outbound ip of this machine.
represents the base command when called without any subcommands.
No description provided by the author
No description provided by the author

# Variables

No description provided by the author
No description provided by the author

# Type aliases

No description provided by the author