package
0.0.0-20240929173221-e112f79cc91e
Repository: https://github.com/olexandrpodustov/personalperformance.git
Documentation: pkg.go.dev

# README

Crypto Square

Implement the classic method for composing secret messages called a square code.

Given an English text, output the encoded version of that text.

First, the input is normalized: the spaces and punctuation are removed from the English text and the message is downcased.

Then, the normalized characters are broken into rows. These rows can be regarded as forming a rectangle when printed with intervening newlines.

For example, the sentence

If man was meant to stay on the ground, god would have given us roots.

is normalized to:

ifmanwasmeanttostayonthegroundgodwouldhavegivenusroots

The plaintext should be organized in to a rectangle. The size of the rectangle (r x c) should be decided by the length of the message, such that c >= r and c - r <= 1, where c is the number of columns and r is the number of rows.

Our normalized text is 54 characters long, dictating a rectangle with c = 8 and r = 7:

ifmanwas
meanttos
tayonthe
groundgo
dwouldha
vegivenu
sroots

The coded message is obtained by reading down the columns going left to right.

The message above is coded as:

imtgdvsfearwermayoogoanouuiontnnlvtwttddesaohghnsseoau

Output the encoded text in chunks. Phrases that fill perfect squares (r X r) should be output in r-length chunks separated by spaces. Imperfect squares will have n empty spaces. Those spaces should be distributed evenly across the last n rows.

imtgdvs fearwer mayoogo anouuio ntnnlvt wttddes aohghn sseoau

Notice that were we to stack these, we could visually decode the cyphertext back in to the original message:

imtgdvs
fearwer
mayoogo
anouuio
ntnnlvt
wttddes
aohghn
sseoau

Running the tests

To run the tests run the command go test from within the exercise directory.

If the test suite contains benchmarks, you can run these with the -bench flag:

go test -bench .

Keep in mind that each reviewer will run benchmarks on a different machine, with different specs, so the results from these benchmark tests may vary.

Further information

For more detailed information about the Go track, including how to get help if you're having trouble, please visit the exercism.io Go language page.

Source

J Dalbey's Programming Practice problems http://users.csc.calpoly.edu/~jdalbey/103/Projects/ProgrammingPractice.html

Submitting Incomplete Solutions

It's possible to submit an incomplete solution so you can see how others have completed the exercise.

# Functions

No description provided by the author